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Black-eye patterns: A representation of three-dimensional symmetries in thin domains
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What is believed to be the first experimental evidence for Turing patterns was observed in the CIMA
reaction by De Kepper and colleagues. Ouyang and Swinney performed further experiments in a “thin” layer
of gel. Patterns observed at onset were basically two-dimensional. However, beyond onset a structure that does
not typically occur in two-dimensional domains was observed—the black-eye pattern. In this paper we use the
full three-dimensionality of the patterned layer to find a setting where black-eye patterns naturally occur. We
propose that black-eye patterns have the symmetry of a body-centered-cubic lattice.
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[. INTRODUCTION hexagonal pattern observed at onset. However, the authors
point out that in the experiments the harmonics were not
Pattern formation in thin domains is often formulated as adetected until well beyond the onset of hexagons, while from
planar problem. Examples include models for animal coathe analysis one would expect the amplitudes of the harmon-
pattern formation[1], application of symmetric bifurcation ics to grow continuously beyond the primary instability. In
theory[2] to pattern formation in Rayleigh-Bard convec- Sec. VI of Ref.[6], the authors express their concern about
tion [3], the Newell-Whitehead-Segel equatip4l], and its this discrepancy, and suggest that it could be due to insuffi-
Euclidean invariant versiofb,6]. These two-dimensional ap- cient sensitivity in the experiments, or perhaps the secondary
proaches are often satisfactory. However, there is evidena@odes should not be “slaved” to the primary modes as their
of natural and experimental patterns whose highly developetheory had assumed.
structure is surprising in purely two-dimensional systems. To our knowledge, black-eye patterns have not been re-
The formation of spatial patterns in reaction-diffusion ported in other prototype pattern forming systems, such as
systems, predicted by Turir|@], was first observed experi- convection. Pattern formation is considered a very universal
mentally by De Kepper and colleagued, working with the  phenomenon which is, to a large degree, determined by sym-
chlorite-iodide-malonic acidCIMA) reaction in an open thin metry considerations. The two-dimensional symmetry de-
strip gel reactor. Ouyang and Swinn@j performed a series scription given in Ref[6] places the CIMA reaction in the
of experiments on the same reaction, occurring in a thin dissame symmetry class, for example, asn&-Marangoni
of gel contained between two continuously fed well-stirredconvection or Rayleigh-Beard convection in non-
reactors. By varying the control parameter, hexagonal oBoussinesq fluids. This argument leads very naturally to the
striped patterns emerged spontaneously from the uniformuestion: Why have black-eye patterns not been reported in
state. Beyond the onset of Turing patterns, the authors olexperimental studies of pattern formation in convection? A
serve transitions to more complex stationary patterns, includsimple but subtle answer is that the reaction-diffusion
ing rhombic structures, zigzags, and black eyes. The Euclidmechanism has an intrinsic isotropyhich is not present in
ean invariant envelope equation developed by Gunaratne
et al. [5,6] reproduces many of the experimental observa-
tions. The theory is developed under the assumption that, due
to the thinness of the domain, the selected patterns are basi-
cally two-dimensional.
A black-eye pattern, reproduced from RE8), is shown
in Fig. 1. The Fourier transform reported in the same refer-
ence shows that this structure consists of the superposition of
two hexagonal arrays of spots with different wavelengths in
the ratio /3. Linear superpositions of such modes are not
expected in purely two-dimensional systems. Gunaratne
et al.[5,6] propose that since these patterns occur away from
onset, they can be justified as spatial harmonics generated by
nonlinearinteractions of the basic modes responsible for the

*Present address: Ecology and Epidemiology Group, Department
of Biological Sciences, University of Warwick, Coventry CV4
7AL, United Kingdom. Electronic address: FIG. 1. Black-eye pattern observed experimentally by Ouyang
mgmg@maths.warwick.ac.uk and Swinney(Reprinted with permission from R€f6].)
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convection that introduces three-dimensional symmetriesfurther investigations. We stress the importance of investiga-
into the problem. tions towards better resolving the thickness of the “patterned

Independent studies, based on the inclusion of generd@yer” and its “boundaries,” and understanding how the
symmetry considerations in the Landau theory of nonequilibpattern selection varies with the thickness of the gel layer.
rium phase transitions, have shown strong evidence thdtinally, our conclusions are summarized in Sec. IV.
body-centered-cubi¢bco structures are the most favored

crystal structures near the melting lifi0]. By analogy with Il. THE BIFURCATION PROBLEM
this work, it was shown that bcc structures are the most ) .
stable Turing patterns in a three-dimensional spadg¢ Nu- In Secs. Il A and Il B we briefly describe how group the-

merical simulations of the Brusselator model of the Turing®'etical techniques developed by Golubitséyal. [2] are
instability [12] confirmed the theoretically predicted three- US€d 0 construct a general scenario for the onset of spatially
dimensional patterns. Such patterns, which include bcc, wereriodic patterngplanformg in three dimensions. The two

obtained for isotropic systems, and also in the presence giectionswhich are included here for completenessfer the
gradients such as those due to feeding fluxes. A more dérjterested readers to related work. However, readers who

tailed study of pattern selection in three-dimensional TuringViSh t0 skip the general abstract formulation can go straight
systems was recently completitB] by center manifold re- to Secs. IIC and Il D,_Where we consider the particular case
duction of two reaction-diffusion models—the Brusselatorf Pody-centered-cubitbcg structures. There we show that

and the more realistic Lengyel-Epstein model for the C|MAbIack-.eye patterns can occur as a linear instability in a thin
reaction. layer if the full three-dimensionality of the patterned layer is

The black-eye pattern observed in the CIMA reaction byt@ken into account.

Ouyang and Swinney forms a layer whose thickness is com-
parable to the pattern wavelength. Naively, in a system A. The E(3)-invariant problem

whose aspect rati@ize of domain to waveleng):lis notvery Following Dionne and Golubitsky16,17), let P denote
large, one would not expect symmetries that do not leave thgn elliptic operatore.qg., reaction diffusionbetween func-

dgg:'dn clg\r/?sla:éiego;edve&;;Ise(r;t(: duEiushlfal JZJQS ggex- i_on spacest and). We are interested in steady solutions of
P Jug b gnly Pecd paq partial differential equation

terns in small aspect ratio systems. The presence of unex-
pected Euclidean symmetry effects was noticed and carefully U+ P(u, ) =0, (2.0
investigated by several researchers during the last 20 years

(see Ref[14] for a review including many referenge$uch

sp?ttial syr?mgtr(ijes arz knttl)wn ?E;?eﬁ Zy?”\‘/imezﬁ that whereu: R3—R is restricted to being a scalar functi¢of-
was also independently established by Winfre8] tha ten when considering bifurcations the general situation of

certain wave patterns observed in thin layers of liquid mal-u. R3— R™ reduces to this cakeéWe assume thaP is equi-

onic acid reagent are best interpreted as three-dimension%riam under an action of the Euclidean grdg8) consist-
structures seen in projection. ing of a semidirect sum of the group of rotations and reflec-

This paper uses three-dimensional Euclidean symmetrieﬁons 0O(3), with the group of translation&?. The action of
to propose a theory for the occurrence of black eyes, in al- ' '

o i 3
ternative to that proposed in Rd#®]. The thin domain is y€E(3) onuis induced by the action ofi” as
considered as a slice of a fully three-dimensional problem 1

whose symmetry is described by a lattice in three dimen- (yn)(x)=uly ).

sions. The lattice underlines the construction of spatially pe-

riodic functions(planformg in R3. The corresponding sliced Assume that there is a trivial solutien=0, which undergoes
planforms have now a three-dimensional characterizatio@ generic steady-state bifurcation wheris varied across a
and different planforms may have different structures in thecritical value u.. More formally, the linearizationl
thin direction. As a result, we find symmetries that are ”0t=(d7))(o,ﬂc), has a nontrivial kernel and, as the paramegter

expected in planar systems. In particular, black-eye patternggsses the critical valyg,, the eigenvalues that go through

are expected as a slice of a bce planform, which is a favorits ..o 4o so with nonzero speéithis is to say that iftr() is

structure in three dimensions. In contrast with the theory, eigenvalue that varies with the parametersuch that

proposed in Ref6], we propose a scena_rio wh_ere_the bIack-U(Mo):O, then @o/d ) (o) #0]. Without further assump-
eye pattern occurs aslmear mode. This distinction may yions ' a genericity condition states that the kernel of the lin-

have Important consequences in future directions for pattergy ;e operator above is an irreducible representation of the
formation studies.

where u e R is a bifurcation parameter and, for simplicity,

(2.2

. . . . roupE(3).
The remainder of this paper is organized as follows. Secg PE(3)
tion Il begins with the formulation of a generic o _ o
E(3)-invariant bifurcation problem, and its restriction to spa- B. Restriction to a spatially periodic problem

tial per|0d|C|ty This is fO"OWGd by the demolnstration of Dionne and Go|ub|tsk)[16,1ﬂ restrict their ana|ysis to
how the black-eye pattern is obtained as a slice of the bcegpatially periodic steady solutions and classifying the pos-

pattern. Comparison with the experimental pattern obtainediple planforms. To find spatially periodic solutions, the au-
by Ouyang and Swinney is made at the end of the section. lfhors fix a latticeZ in R® and demand that

Sec. lll, we discuss at length further issues related to the
application of the theory to the experiments, and propose u(x+1l)y=u(x) (2.3
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for all | e £. Functions satisfying Eq2.3) are called pe-  but restrict the bifurcation analysis to the subspace of eigen-
riodic. Denoting by X, and ), the spaces ofZ-periodic  functions that satisfy Neumann boundary conditions in a cu-
functions in X and ), respectively, the Euclidean equivari- bic domain.

ance ofP implies that

C. Black-eye pattern in a slice of bcc
P X XR—=Y,. (2.4 . . , ) )
In this section, we restrict attention to the bcc lattice. Spe-
The groupE(3) acts onC-periodic mappings as the semidi- cial interest will be devoted to one of the maximal planforms

rect sum,I'=H+ T3, whereH is the group of rotations and predicted by Dionn¢l7]—the bcc pattern. We considéras
reflections that leave the lattic& invariant(holohedry as in the beg lattice generated by

Ref. [18], or point operation as in Ref19]), and the three 1 1 1 1
torus, T3=R3/ L, is the effective action of translations. The |1:(_,oy_) ' |2:(_,_ _,o> ,
operatorP in Eq.(2.4) isI" equivariant, and the kernel of the V2" 2 20 2
Iinearization,LMC, in the space ofC-periodic functions is
generically an irreducible representation of the same group | 1 1 1 2.9
[2]. =25 2% 243)" -
Now we say that=(m,,m,,m,) is a wave vector if and 2‘/5 2\/5 2‘/5
only if the complex-valued plane wave The dual lattice £*, is generated by the vectors
— a2mi(m-Xx)
Wp(X)=¢e 2.

) 29 mi=(\2.002), m=(y2,~2,0,
is £ periodic. The corresponding wave number is defined as
m.=|m|. It is natural to define the dual lattic€*, as the set ms=(0,—2,12). (2.10
of all me R3 such that the associated plane wawg,, is £ e
periodic, or equivalently, Other vectors inf* with the same lengthm.=2, are ob-

tained by changing the sign of individual components of
L£*={meR3%(m-1)eZ foralll e L}. (2.69 My, m,,m3. These operations lead to a fundamental represen-

tation with dimension 12. Substituting these wave vectors in

(In the terminology of Ref[19], £* corresponds to the re- the eigenfunctioru as in Eq.(2.8) and making the ampli-
ciprocal lattice) tudesz,, all real and equal, we generate a typical bcc pattern,
For the given latticeC we assume that there exists a criti- as shown in Fig. 2. This is one of the expected planforms in
cal parameter valug.. and a wave vectom such that the bifurcation problems with bcc symmetry. Interestingly, and

real-valued function also shown in the figure, a black-eye pattern can be observed
- in the sectiorz=x+y.
V(X)) = ZWin(X) + ZrW_ m(X) (2.7 The relation between bcc and black-eye patterns becomes

clear by applying the orthonormal change of coordinates
is an eigenfunction for the Iinearizatidnﬂc, wherez,, and

— . 1 -1
Z, are the complex amplitudes of the plane wawgs and 7z 5 0
W_p, respectively. Théd equivariance ot , implies that if A= 11 2 2.10
Vn, is an eigenfunction, then so is,, , for everym’ e £* | B VB VB '
having the same absolute valuelasConsequently, a typical 1 1 -1
eigenfunction is a real-valued function of the form 3 V3 V3
— 27ri(m-X) . .
u(x) ‘mgmc ZmE , (2.8 py transforminga;=Al;, we obtain the generators of the
body-centered-cubic lattice in the form

where the wave vectors are elements of* that have wave
numberm., and thez, satisfy the reality conditiorz_,, (1 \/§0 (100 (1 V3 1
:Zm_ a1= 2' ’ aZ_( ’ 1)1 a3= 2 6 y 2\/6 .

A complete classification of steady triply periodic bifur- (2.12

cations is a large problem, and is usually restricted to sub-

classes that exhibit particular features. Dioffé] lists the By applying the change of coordinatés=Ax, the eigen-
holohedriesH, of the 14 Bravais lattices in three dimensions function u is rewritten as

(see also Refs[18,19), and classifies the expected plan-

i i iH -+ T3-invari ifurca- _ -
forms with maximal symmetry iH + T>-invariant bifurca u(X)= ; 2,276 X) | 7 g~ 2mi(k-X), 2.13
—Rc

tion problems. Callahan and Knoblof20] perform a bifur-
cation analysis restricted to the simple representations with
cubic symmetry,H=0®Z3, where O is the octahedral wherek=mA~1. Note thatk,=m. due to the orthonormality
group andZj represents the center reflection. Gomes anwf the change of coordinates In the new coordinates, the
Stewart[21] consider representations of higher dimension,generatorsn,,m,,my of the dual latticeC* are
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FIG. 3. Projection of a normalized bcc lattice on the plane
(X,Y). Sections of constarat are hexagonal lattices. Points marked
with circles correspond to sections of the fotw3n/2/3, points
marked with crosses correspond to sections of the f@rm(3n
+1)/2y3, and points marked with stars correspond to sections of
the formZ=(3n+2)/2\/3, wheren is an integer.

X

FIG. 2. A bcc pattern in the coordinates,¥,z). (a) shows three
sections: constant y, andz, respectively, where square patterns are
seen.(b) shows the sectiom=x+y, where black-eye patterns are

seen. N+1

N
M= { (X,Y,Z)eR%:——==<Z<—— forsomeNe7Z;.

2.6 2.6

3 242 2.1
ki=(1.33,0, kp=(2,0,0), k3=(1,\/?_,—%). 219
(2.14 A monolayer of the bcc pattern in the coordinat¥sY,Z) is
shown in Fig. 4a). In experimental observations of chemical
patterns, the optical resolution in the depth of the gel layer is

Using the new coordinates, a projection®bn the plane . :
g broJ P not sufficient to separately resolve the pattern in each sec-

(X,Y) is shown in Fig. 3. The sections

N (@)
(2.19

Z:_l
2\/6 z

whereN is an integer, consist of hexagonal lattices, and there
are no lattice points between two layers of consecubive
Lattice points in the layeZ =0 form a hexagonal lattice with
wavelength 1 in the planeX(Y), and lattice points in con-
secutive layersZ==+1/2\/6, project together in the plane ()
(X,Y) as a hexagonal lattice with wavelength/2/ The pro-
jected wavelengths are in the rati@®. Now it is crucial to
note that the three generatqi®.12 have the same length
when seen as three-dimensional vectors. This implies that the
corresponding plane waves bifurcate together and possibly
superimpose to provide the structure of the black-eye pattern.

D. Comparison with the experiment FIG. 4. A bcc pattern in the coordinateX,{Y,Z) restricted to

We call the space between two Se(@&15 with consecu- the monolayer— 1/4/6<Z<1/4\/6. (a) shows the appearance of
tive N amonolayer More formally, a monolayer is the three- the pattern on the top-plar&= 1/4/6 and on the sidegb) shows
dimensional slice the integral over the depth 1yB of the monolayer.
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tion. The photograph in Fig. 1 represents the integral of the B. Euclidean symmetries in the CIMA reaction
experimental pattern over the thickness of the gel layer. The
integral of the bcc pattern in Fig.(@ over the monolayer
depth shows up the black-eye patt¢see Fig. 4b)].

It is well accepted in the literature that reaction-diffusion
systems are modeled by(&-invariant systems of coupled
PDEs together with more or less appropriate boundary con-
ditions(see, for example, Reff12] and[13]). Consequently,
Il DISCUSSION any potential deviation froniE(3) symmetry should origi-
nate in conditions imposed by the domain boundaries. In the
This paper establishes a correspondence between bcc apdrticular case of Ouyang and Swinney’s experiments, we do
black-eye patterns. After a suitable change of coordinates weot expect boundary effects to be significant enough to
find a black-eye pattern in a monolayer of a bcc patternchange the nature of the intrinsic Turing patterns. More con-
suggesting that the two patterns are Ssme Mathemati- cretely, if in the absence of boundaries the most stable three-
cally, the correspondence is established here. Physicallglimensional pattern has bcc symmetag predicted in Ref.
whether the proposed scenario corresponds to what happejisl]) the boundaries may have a perturbing effect, but it is
in the experiments of Ouyang and Swinney is a challengingery unlikely that they will lead to the selection of a two-
problem that deserves to be carefully discussed and furthefimensional pattern instead, no matter how thin the domain
investigated. This discussion intends to clarify some issuemay be. This belief is substantiated by the comparison of two
related to the applicability of this theory, contribute to ansets of experiments. For ease of exposition, the cartesian co-
ongoing debate about the dimensionality of chemical paterdinatesX,Y,Z are introduced.
terns in thin domains, and propose further investigations on 1. A set of experiments on the CIMA reaction was per-
three fronts: experiments, mathematics, and computations.formed in Bordeaux as reported in R¢8]. The reaction
occurred in a rectangular layer of gel with dimensions in
milimeters (Lx,Ly,L;)=(20,3,1). The reactants were fed
through the plane¥ =0,3, producing a chemical gradient in
Naively, one would not expect a small aspect ratio systenthe Y direction. Visualizing the directionX,Y, the authors
to exhibit any symmetries that do not leave the domain in-observed the formation of patterns in the central region of
variant. However, when only the symmetries of the domairthe reactor. In particular, a regular array of spots was ob-
are taken into account, it is not unusual to find unexpectederved. The reported wavelength of this structure was ap-
conjugacies and unexpected highly developed patterns. Oftgoroximately 0.2 mm. The observations led the authors to
the boundary conditions allow the system to inherit some ofpeculate thata) the patterns are three-dimensional because
the Euclidean symmetries of the model partial differentialthe wavelength is smaller than any geometric size of the
equations(PDES. These spatial symmetries are calleid-  reactor;(b) in the region where patterns can be observed, the
den symmetriesOf particular interest are the translational spot distribution is in qualitative agreement with a three-
hidden symmetries in multidimensional rectangles theoretidimensional bcc structure. This experimental result moti-
cally addressed by Gomes and Stewa&Z], and carefully vated further mathematical and computational work on bifur-
tested on the Faraday experiment by Crawfetdal. [23]. cations with bcc symmetrgsee, for example, Reff12] and
Rotational hidden symmetries have also been detected anfd3]).
investigated. Theoretical results were applied to a variety of 2. In Austin, the CIMA reaction experiment@s de-
systems, including reaction-diffusion, convection, solidifica-scribed in Ref[6]) were performed in a circular layer of gel
tion of binary fluids, Kuramoto-Sivashinsky, Faraday experi-with a diameter of 25 mm in the plan&{Y) and a thickness
ment, elastic bucklingsee the review articlgl4]). of 1 mm inZ. The reactants were fed through the plades
In very broad terms, hidden symmetries are uncovered by 0,1, producing a chemical gradient in tAelirection. The
extending the problem periodically to a larger one withoutvisualized directions werX,Y, and a sequence of patterns
boundaries, and then restricting to the subspace containifgrmed as a control parameter was varied. In particular, a
the solutions that satisfy the original boundary conditionshexagonal array of white spots with wavelength approxi-
Whether or not such an extension can be made depends omately 0.15 mm formed, and further up in parameter value,
the model PDE, the shape of the domain, and the boundargmaller black spots appeared in the center of the white spots
conditions. (black-eye pattermn All patterns formed in a layer that was
To place the present paper in perspective, we should saywuch thinner than the gel thickness. The speculations made
that it uncovers spatial hidden symmetries in the CIMA re-by the authors about the dimensionality of the observed pat-
action experiments of Ouyang and Swinney. Previous resulterns were as follows(a) The thickness of the pattern is
on hidden symmetries and their successful application t@omparable to the wavelength, and hence the patterns are
physical and numerical experiments were certainly a keyessentially two-dimensiona(b) The black-eye pattern is a
motivation for the approach presented here. The techniguspatial harmonic generated by nonlinear interactions of the
described in Sec. Il can be developed into a variant of stanbasic modes responsible for the two-dimensional hexagonal
dard hidden symmetry methods, which should lead to morgattern.
detailed predictions. Modifications of the standard methods What is the reason for such different interpretations of the
are needed to accommodate features present in the CIMAvo experiments? If the Austin experiments were signifi-
reaction experiments. In particular, the thickness of the “patcantly anisotropic to select two-dimensional patterns only,
terned layer” and the conditions imposed by its “bound-then why does the same not apply to the Bordeaux experi-
aries” are delicate issues deserving careful investigation oments? The main difference is that in the Bordeaux experi-
experiments, mathematics, and computations. ments the chemical gradient is imposed in a direction where

A. Hidden symmetries
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the gel is 3 mm thick, while in the Austin experiments this the appropriate coordinates are points needing further inves-
gradient is imposed in the thinner direction of 1 mm of gel.tigation. The mathematical setting introduced in Sec. Il is a
However, the patterns are reported to form in a layer that istarting point for further work using standard methods of
much thinner than the gel layer. The fraction of the domainsymmetric bifurcation theor{2].
that we are interested in is relatively far from the feeding The results of the mathematical investigation proposed in
boundaries in both cases, and therefore it would not seeffe above paragraph should be closely compared with con-
unreasonable if the effect of boundary conditions on the setolled experiments on the CIMA reaction. For that it is im-
lected patterns was no more than a distortion. Furthermord©rtant to obtain a good understanding of how the pattern
concerning the Austin experiments, Qi Ouyang explaified selection in the experiment varies with the thickness of the
a recent private communicatipthat the gel was sandwiched gel layer.
with porous glas$0.4 mm thick, the diffusion of which is
typically 5 times lower than that of gels. This brings the IV. CONCLUSIONS
effective thickness of each glass layer close to 1 mm, further |n¢jyding the third dimension may lead very naturally to
reducing the significance of boundary effects in the pattermjfyrcations to black-eye patterns in thin domains. In the
selection. scenario introduced here, the black-eye pattern is a linear
A different question is: What happens at the “bound-mode. We propose this technique as a method by which to
aries” of the “patterned layer,” and how does that constrainyncover spatial symmetries that are not expected in two di-
the pattern selection? Numerical investigations of this probmensjons. Together with all the present uncertainties associ-
lem were made possible by the proposal of a realistic modedted with the “boundaries” of the “patterned layer” in the
of the simpler chlorite dioxide-iodine-malonic acid experimental setting and the difficulties in resolving its
(CDIMA) reaction by Lengyel, Rabai, and EpstditRE)  thickness, we argue that the observations are well within our
[24]. Using this model, Setayeshgar and Crf5] analyze  scenario for a bifurcation with approximate bcc symmetry.
numerically the one-dimensional patterns formed along thghere are other nonstandard patterns whose relations with
gradients imposed by boundary feeds and study their lineaheoretical studies performed in two or three dimensions are
stability to symmetry-breaking perturbations in a directionggi| being debatedsee, for example, Ref26]). The tech-
transverse to these gradients. In Sec. VI of R@b] the  pjque introduced in this paper is very general and it may be
authors suggest further investigations that, amongst Othf%{pplicable to other situations.
things, should help to answer the question posed at the be- Finally, the black-eye pattern is of interest in other fields
ginning of this paragraph. It should be very interesting to segf science, in particular morphogenesiee, for example,
how such investigations support our proposal that the deref.[27]). There is evidence of black-eye patterns in animal
scribed CIMA reaction experiments reveal approximatecoats, and the mechanism underlying its selection is not at all

E(3) symmetry in the “patterned layer.” understood. Numerical simulations of reaction-diffusion
models in two dimensions reproduce several of the experi-
C. Bifurcation sequence mentally observed Turing patterns, but they fail to reproduce

In our theoretical setup, the wavelength of the pattern an
the thickness of the monolayer are in the ratiq621.
Whether the bcc symmetry is exact or only approximate de

%e black-eye patter(see Table 1 of Ref27]). We express
ere a strong conviction that black-eye patterns can be pro-
duced by three-dimensional simulations in thin domains.

pends on arguments that involve the above ratio and th uch simulations should provide important information to a

boundary conditions on both sides of the patterned |ayerglarificatio_n of essential issues concerning the pattern thick-
Bifurcation to the bcdor black-eye pattern occurs directly ness and its boundaries.
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