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Black-eye patterns: A representation of three-dimensional symmetries in thin domains

M. Gabriela M. Gomes*
Centro de Matema´tica Aplicada, Universidade do Porto, Rua das Taipas 135, 4050 Porto, Portugal

~Received 2 November 1998!

What is believed to be the first experimental evidence for Turing patterns was observed in the CIMA
reaction by De Kepper and colleagues. Ouyang and Swinney performed further experiments in a ‘‘thin’’ layer
of gel. Patterns observed at onset were basically two-dimensional. However, beyond onset a structure that does
not typically occur in two-dimensional domains was observed—the black-eye pattern. In this paper we use the
full three-dimensionality of the patterned layer to find a setting where black-eye patterns naturally occur. We
propose that black-eye patterns have the symmetry of a body-centered-cubic lattice.
@S1063-651X~99!06910-X#

PACS number~s!: 47.54.1r, 02.20.Qs, 47.20.Ky
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I. INTRODUCTION

Pattern formation in thin domains is often formulated a
planar problem. Examples include models for animal c
pattern formation@1#, application of symmetric bifurcation
theory @2# to pattern formation in Rayleigh-Be´nard convec-
tion @3#, the Newell-Whitehead-Segel equation@4#, and its
Euclidean invariant version@5,6#. These two-dimensional ap
proaches are often satisfactory. However, there is evide
of natural and experimental patterns whose highly develo
structure is surprising in purely two-dimensional systems

The formation of spatial patterns in reaction-diffusio
systems, predicted by Turing@7#, was first observed experi
mentally by De Kepper and colleagues@8#, working with the
chlorite-iodide-malonic acid~CIMA ! reaction in an open thin
strip gel reactor. Ouyang and Swinney@9# performed a series
of experiments on the same reaction, occurring in a thin d
of gel contained between two continuously fed well-stirr
reactors. By varying the control parameter, hexagonal
striped patterns emerged spontaneously from the unif
state. Beyond the onset of Turing patterns, the authors
serve transitions to more complex stationary patterns, inc
ing rhombic structures, zigzags, and black eyes. The Euc
ean invariant envelope equation developed by Gunar
et al. @5,6# reproduces many of the experimental obser
tions. The theory is developed under the assumption that,
to the thinness of the domain, the selected patterns are
cally two-dimensional.

A black-eye pattern, reproduced from Ref.@6#, is shown
in Fig. 1. The Fourier transform reported in the same re
ence shows that this structure consists of the superpositio
two hexagonal arrays of spots with different wavelengths
the ratioA3. Linear superpositions of such modes are
expected in purely two-dimensional systems. Gunara
et al. @5,6# propose that since these patterns occur away f
onset, they can be justified as spatial harmonics generate
nonlinear interactions of the basic modes responsible for
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hexagonal pattern observed at onset. However, the aut
point out that in the experiments the harmonics were
detected until well beyond the onset of hexagons, while fr
the analysis one would expect the amplitudes of the harm
ics to grow continuously beyond the primary instability.
Sec. VI of Ref.@6#, the authors express their concern abo
this discrepancy, and suggest that it could be due to insu
cient sensitivity in the experiments, or perhaps the second
modes should not be ‘‘slaved’’ to the primary modes as th
theory had assumed.

To our knowledge, black-eye patterns have not been
ported in other prototype pattern forming systems, such
convection. Pattern formation is considered a very unive
phenomenon which is, to a large degree, determined by s
metry considerations. The two-dimensional symmetry
scription given in Ref.@6# places the CIMA reaction in the
same symmetry class, for example, as Be´nard-Marangoni
convection or Rayleigh-Be´nard convection in non-
Boussinesq fluids. This argument leads very naturally to
question: Why have black-eye patterns not been reporte
experimental studies of pattern formation in convection?
simple but subtle answer is that the reaction-diffusi
mechanism has an intrinsic isotropy~which is not present in

nt

FIG. 1. Black-eye pattern observed experimentally by Ouya
and Swinney.~Reprinted with permission from Ref.@6#.!
3741 © 1999 The American Physical Society
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convection! that introduces three-dimensional symmetr
into the problem.

Independent studies, based on the inclusion of gen
symmetry considerations in the Landau theory of nonequi
rium phase transitions, have shown strong evidence
body-centered-cubic~bcc! structures are the most favore
crystal structures near the melting line@10#. By analogy with
this work, it was shown that bcc structures are the m
stable Turing patterns in a three-dimensional space@11#. Nu-
merical simulations of the Brusselator model of the Turi
instability @12# confirmed the theoretically predicted thre
dimensional patterns. Such patterns, which include bcc, w
obtained for isotropic systems, and also in the presenc
gradients such as those due to feeding fluxes. A more
tailed study of pattern selection in three-dimensional Tur
systems was recently completed@13# by center manifold re-
duction of two reaction-diffusion models—the Brussela
and the more realistic Lengyel-Epstein model for the CIM
reaction.

The black-eye pattern observed in the CIMA reaction
Ouyang and Swinney forms a layer whose thickness is c
parable to the pattern wavelength. Naively, in a syst
whose aspect ratio~size of domain to wavelength! is not very
large, one would not expect symmetries that do not leave
domain invariant. However, it is not unusual to find une
pected conjugacies and unexpected highly developed
terns in small aspect ratio systems. The presence of u
pected Euclidean symmetry effects was noticed and care
investigated by several researchers during the last 20 y
~see Ref.@14# for a review including many references!. Such
spatial symmetries are known ashidden symmetries.

It was also independently established by Winfree@15# that
certain wave patterns observed in thin layers of liquid m
onic acid reagent are best interpreted as three-dimens
structures seen in projection.

This paper uses three-dimensional Euclidean symme
to propose a theory for the occurrence of black eyes, in
ternative to that proposed in Ref.@6#. The thin domain is
considered as a slice of a fully three-dimensional probl
whose symmetry is described by a lattice in three dim
sions. The lattice underlines the construction of spatially
riodic functions~planforms! in R3. The corresponding sliced
planforms have now a three-dimensional characteriza
and different planforms may have different structures in
thin direction. As a result, we find symmetries that are
expected in planar systems. In particular, black-eye patt
are expected as a slice of a bcc planform, which is a favo
structure in three dimensions. In contrast with the the
proposed in Ref.@6#, we propose a scenario where the blac
eye pattern occurs as alinear mode. This distinction may
have important consequences in future directions for pat
formation studies.

The remainder of this paper is organized as follows. S
tion II begins with the formulation of a generi
E(3)-invariant bifurcation problem, and its restriction to sp
tial periodicity. This is followed by the demonstration o
how the black-eye pattern is obtained as a slice of the
pattern. Comparison with the experimental pattern obtai
by Ouyang and Swinney is made at the end of the section
Sec. III, we discuss at length further issues related to
application of the theory to the experiments, and prop
s

al
-
at

st

re
of
e-
g

r

y
-

e
-
at-
x-

lly
rs

l-
al

es
l-

-
-

n
e
t
ns
te
y
-

rn

c-

-

c
d
In
e
e

further investigations. We stress the importance of investi
tions towards better resolving the thickness of the ‘‘pattern
layer’’ and its ‘‘boundaries,’’ and understanding how th
pattern selection varies with the thickness of the gel lay
Finally, our conclusions are summarized in Sec. IV.

II. THE BIFURCATION PROBLEM

In Secs. II A and II B we briefly describe how group th
oretical techniques developed by Golubitskyet al. @2# are
used to construct a general scenario for the onset of spat
periodic patterns~planforms! in three dimensions. The two
sections~which are included here for completeness! refer the
interested readers to related work. However, readers
wish to skip the general abstract formulation can go strai
to Secs. II C and II D, where we consider the particular c
of body-centered-cubic~bcc! structures. There we show tha
black-eye patterns can occur as a linear instability in a t
layer if the full three-dimensionality of the patterned layer
taken into account.

A. The E„3…-invariant problem

Following Dionne and Golubitsky@16,17#, let P denote
an elliptic operator~e.g., reaction diffusion! between func-
tion spacesX andY. We are interested in steady solutions
the partial differential equation

ut1P~u,m!50, ~2.1!

wheremPR is a bifurcation parameter and, for simplicity
whereu: R3→R is restricted to being a scalar function~of-
ten when considering bifurcations the general situation
u: R3→Rm reduces to this case!. We assume thatP is equi-
variant under an action of the Euclidean groupE(3) consist-
ing of a semidirect sum of the group of rotations and refl
tions,O(3), with the group of translations,R3. The action of
gPE(3) on u is induced by the action onR3 as

~gu!~x!5u~g21x!. ~2.2!

Assume that there is a trivial solutionu50, which undergoes
a generic steady-state bifurcation whenm is varied across a
critical value mc . More formally, the linearization,Lmc

5(dP)(0,mc) , has a nontrivial kernel and, as the parametem

crosses the critical valuem0, the eigenvalues that go throug
zero do so with nonzero speed@this is to say that ifs(m) is
an eigenvalue that varies with the parameterm such that
s(m0)50, then (ds/dm)(m0)Þ0#. Without further assump-
tions, a genericity condition states that the kernel of the
earized operator above is an irreducible representation o
groupE(3).

B. Restriction to a spatially periodic problem

Dionne and Golubitsky@16,17# restrict their analysis to
spatially periodic steady solutions and classifying the p
sible planforms. To find spatially periodic solutions, the a
thors fix a latticeL in R3 and demand that

u~x1 l !5u~x! ~2.3!
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for all l PL. Functions satisfying Eq.~2.3! are calledL pe-
riodic. Denoting byXL and YL the spaces ofL-periodic
functions inX and Y, respectively, the Euclidean equivar
ance ofP implies that

P:XL3R→YL . ~2.4!

The groupE(3) acts onL-periodic mappings as the semid
rect sum,G5H1̇T3, whereH is the group of rotations and
reflections that leave the latticeL invariant~holohedry as in
Ref. @18#, or point operation as in Ref.@19#!, and the three
torus,T35R3/L, is the effective action of translations. Th
operatorP in Eq. ~2.4! is G equivariant, and the kernel of th
linearization,Lmc

, in the space ofL-periodic functions is
generically an irreducible representation of the same gr
@2#.

Now we say thatm5(mx ,my ,mz) is a wave vector if and
only if the complex-valued plane wave

wm~x!5e2p i(m•x) ~2.5!

is L periodic. The corresponding wave number is defined
mc5umu. It is natural to define the dual lattice,L* , as the set
of all mPR3 such that the associated plane wave,wm , is L
periodic, or equivalently,

L* 5$mPR3:~m• l !PZ for all l PL%. ~2.6!

~In the terminology of Ref.@19#, L* corresponds to the re
ciprocal lattice.!

For the given latticeL we assume that there exists a cri
cal parameter valuemc and a wave vectorm such that the
real-valued function

vm~x!5zmwm~x!1 z̄mw2m~x! ~2.7!

is an eigenfunction for the linearizationLmc
, wherezm and

z̄m are the complex amplitudes of the plane waveswm and
w2m , respectively. TheH equivariance ofLmc

implies that if

vm is an eigenfunction, then so isvm8 , for every m8PL*
having the same absolute value asm. Consequently, a typica
eigenfunction is a real-valued function of the form

u~x!5 (
umu5mc

zme2p i(m•x), ~2.8!

where the wave vectorsm are elements ofL* that have wave
number mc , and thezm satisfy the reality conditionz2m

5 z̄m .
A complete classification of steady triply periodic bifu

cations is a large problem, and is usually restricted to s
classes that exhibit particular features. Dionne@17# lists the
holohedries,H, of the 14 Bravais lattices in three dimensio
~see also Refs.@18,19#!, and classifies the expected pla
forms with maximal symmetry inH1̇T3-invariant bifurca-
tion problems. Callahan and Knobloch@20# perform a bifur-
cation analysis restricted to the simple representations
cubic symmetry,H5O% Z2

c , where O is the octahedra
group andZ2

c represents the center reflection. Gomes a
Stewart @21# consider representations of higher dimensio
p

s

b-

th

d
,

but restrict the bifurcation analysis to the subspace of eig
functions that satisfy Neumann boundary conditions in a
bic domain.

C. Black-eye pattern in a slice of bcc

In this section, we restrict attention to the bcc lattice. S
cial interest will be devoted to one of the maximal planform
predicted by Dionne@17#—the bcc pattern. We considerL as
the bcc lattice generated by

l 15S 1

A2
,0,

1

A2
D , l 25S 1

A2
,2

1

A2
,0D ,

l 35S 1

2A2
,2

1

2A2
,

1

2A2
D . ~2.9!

The dual lattice,L* , is generated by the vectors

m15~A2,0,A2!, m25~A2,2A2,0!,

m35~0,2A2,A2!. ~2.10!

Other vectors inL* with the same length,mc52, are ob-
tained by changing the sign of individual components
m1 ,m2 ,m3. These operations lead to a fundamental repres
tation with dimension 12. Substituting these wave vectors
the eigenfunctionu as in Eq.~2.8! and making the ampli-
tudeszm all real and equal, we generate a typical bcc patte
as shown in Fig. 2. This is one of the expected planforms
bifurcation problems with bcc symmetry. Interestingly, a
also shown in the figure, a black-eye pattern can be obse
in the sectionz5x1y.

The relation between bcc and black-eye patterns beco
clear by applying the orthonormal change of coordinates

~2.11!

By transforminga j5Al j , we obtain the generators of th
body-centered-cubic lattice in the form

a15S 1

2
,
A3

2
,0D , a25~1,0,0!, a35S 1

2
,
A3

6
,2

1

2A6
D .

~2.12!

By applying the change of coordinatesX5Ax, the eigen-
function u is rewritten as

u~X!5 (
uku5kc

zke
2p i(k•X)1 z̄ke

22p i(k•X), ~2.13!

wherek5mA21. Note thatkc5mc due to the orthonormality
of the change of coordinatesA. In the new coordinates, th
generatorsm1 ,m2 ,m3 of the dual latticeL* are
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k15~1,A3,0!, k25~2,0,0!, k35S 1,
A3

3
,2

2A2

A3
D .

~2.14!

Using the new coordinates, a projection ofL on the plane
(X,Y) is shown in Fig. 3. The sections

Z5
N

2A6
, ~2.15!

whereN is an integer, consist of hexagonal lattices, and th
are no lattice points between two layers of consecutiveN.
Lattice points in the layerZ50 form a hexagonal lattice with
wavelength 1 in the plane (X,Y), and lattice points in con-
secutive layers,Z561/2A6, project together in the plan
(X,Y) as a hexagonal lattice with wavelength 1/A3. The pro-
jected wavelengths are in the ratioA3. Now it is crucial to
note that the three generators~2.12! have the same lengt
when seen as three-dimensional vectors. This implies tha
corresponding plane waves bifurcate together and poss
superimpose to provide the structure of the black-eye patt

D. Comparison with the experiment

We call the space between two Secs.~2.15! with consecu-
tive N a monolayer. More formally, a monolayer is the three
dimensional slice

FIG. 2. A bcc pattern in the coordinates (x,y,z). ~a! shows three
sections: constantx, y, andz, respectively, where square patterns a
seen.~b! shows the sectionz5x1y, where black-eye patterns ar
seen.
e

he
ly
n.

M5H ~X,Y,Z!PR3:
N

2A6
<Z<

N11

2A6
for some NPZJ .

~2.16!

A monolayer of the bcc pattern in the coordinates (X,Y,Z) is
shown in Fig. 4~a!. In experimental observations of chemic
patterns, the optical resolution in the depth of the gel laye
not sufficient to separately resolve the pattern in each s

FIG. 3. Projection of a normalized bcc lattice on the pla
(X,Y). Sections of constantZ are hexagonal lattices. Points marke
with circles correspond to sections of the formZ53n/2A3, points
marked with crosses correspond to sections of the formZ5(3n
11)/2A3, and points marked with stars correspond to sections
the formZ5(3n12)/2A3, wheren is an integer.

FIG. 4. A bcc pattern in the coordinates (X,Y,Z) restricted to
the monolayer21/4A6<Z<1/4A6. ~a! shows the appearance o
the pattern on the top-planeZ51/4A6 and on the sides.~b! shows
the integral over the depth 1/2A6 of the monolayer.
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tion. The photograph in Fig. 1 represents the integral of
experimental pattern over the thickness of the gel layer.
integral of the bcc pattern in Fig. 4~a! over the monolayer
depth shows up the black-eye pattern@see Fig. 4~b!#.

III. DISCUSSION

This paper establishes a correspondence between bcc
black-eye patterns. After a suitable change of coordinates
find a black-eye pattern in a monolayer of a bcc patte
suggesting that the two patterns are thesame. Mathemati-
cally, the correspondence is established here. Physic
whether the proposed scenario corresponds to what hap
in the experiments of Ouyang and Swinney is a challeng
problem that deserves to be carefully discussed and fur
investigated. This discussion intends to clarify some iss
related to the applicability of this theory, contribute to
ongoing debate about the dimensionality of chemical p
terns in thin domains, and propose further investigations
three fronts: experiments, mathematics, and computation

A. Hidden symmetries

Naively, one would not expect a small aspect ratio syst
to exhibit any symmetries that do not leave the domain
variant. However, when only the symmetries of the dom
are taken into account, it is not unusual to find unexpec
conjugacies and unexpected highly developed patterns. O
the boundary conditions allow the system to inherit some
the Euclidean symmetries of the model partial differen
equations~PDEs!. These spatial symmetries are calledhid-
den symmetries. Of particular interest are the translation
hidden symmetries in multidimensional rectangles theor
cally addressed by Gomes and Stewart@22#, and carefully
tested on the Faraday experiment by Crawfordet al. @23#.
Rotational hidden symmetries have also been detected
investigated. Theoretical results were applied to a variety
systems, including reaction-diffusion, convection, solidific
tion of binary fluids, Kuramoto-Sivashinsky, Faraday expe
ment, elastic buckling~see the review article@14#!.

In very broad terms, hidden symmetries are uncovered
extending the problem periodically to a larger one witho
boundaries, and then restricting to the subspace contai
the solutions that satisfy the original boundary conditio
Whether or not such an extension can be made depend
the model PDE, the shape of the domain, and the boun
conditions.

To place the present paper in perspective, we should
that it uncovers spatial hidden symmetries in the CIMA
action experiments of Ouyang and Swinney. Previous res
on hidden symmetries and their successful application
physical and numerical experiments were certainly a
motivation for the approach presented here. The techn
described in Sec. II can be developed into a variant of s
dard hidden symmetry methods, which should lead to m
detailed predictions. Modifications of the standard meth
are needed to accommodate features present in the C
reaction experiments. In particular, the thickness of the ‘‘p
terned layer’’ and the conditions imposed by its ‘‘boun
aries’’ are delicate issues deserving careful investigation
experiments, mathematics, and computations.
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B. Euclidean symmetries in the CIMA reaction

It is well accepted in the literature that reaction-diffusio
systems are modeled by E~3!-invariant systems of coupled
PDEs together with more or less appropriate boundary c
ditions~see, for example, Refs.@12# and@13#!. Consequently,
any potential deviation fromE(3) symmetry should origi-
nate in conditions imposed by the domain boundaries. In
particular case of Ouyang and Swinney’s experiments, we
not expect boundary effects to be significant enough
change the nature of the intrinsic Turing patterns. More c
cretely, if in the absence of boundaries the most stable th
dimensional pattern has bcc symmetry~as predicted in Ref.
@11#! the boundaries may have a perturbing effect, but i
very unlikely that they will lead to the selection of a two
dimensional pattern instead, no matter how thin the dom
may be. This belief is substantiated by the comparison of
sets of experiments. For ease of exposition, the cartesian
ordinatesX,Y,Z are introduced.

1. A set of experiments on the CIMA reaction was pe
formed in Bordeaux as reported in Ref.@8#. The reaction
occurred in a rectangular layer of gel with dimensions
milimeters (LX ,LY ,LZ)5(20,3,1). The reactants were fe
through the planesY50,3, producing a chemical gradient i
the Y direction. Visualizing the directionsX,Y, the authors
observed the formation of patterns in the central region
the reactor. In particular, a regular array of spots was
served. The reported wavelength of this structure was
proximately 0.2 mm. The observations led the authors
speculate that~a! the patterns are three-dimensional beca
the wavelength is smaller than any geometric size of
reactor;~b! in the region where patterns can be observed,
spot distribution is in qualitative agreement with a thre
dimensional bcc structure. This experimental result mo
vated further mathematical and computational work on bif
cations with bcc symmetry~see, for example, Refs.@12# and
@13#!.

2. In Austin, the CIMA reaction experiments~as de-
scribed in Ref.@6#! were performed in a circular layer of ge
with a diameter of 25 mm in the plane (X,Y) and a thickness
of 1 mm in Z. The reactants were fed through the planesZ
50,1, producing a chemical gradient in theZ direction. The
visualized directions wereX,Y, and a sequence of pattern
formed as a control parameter was varied. In particula
hexagonal array of white spots with wavelength appro
mately 0.15 mm formed, and further up in parameter val
smaller black spots appeared in the center of the white s
~black-eye pattern!. All patterns formed in a layer that wa
much thinner than the gel thickness. The speculations m
by the authors about the dimensionality of the observed
terns were as follows:~a! The thickness of the pattern i
comparable to the wavelength, and hence the patterns
essentially two-dimensional.~b! The black-eye pattern is a
spatial harmonic generated by nonlinear interactions of
basic modes responsible for the two-dimensional hexago
pattern.

What is the reason for such different interpretations of
two experiments? If the Austin experiments were sign
cantly anisotropic to select two-dimensional patterns on
then why does the same not apply to the Bordeaux exp
ments? The main difference is that in the Bordeaux exp
ments the chemical gradient is imposed in a direction wh
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the gel is 3 mm thick, while in the Austin experiments th
gradient is imposed in the thinner direction of 1 mm of g
However, the patterns are reported to form in a layer tha
much thinner than the gel layer. The fraction of the dom
that we are interested in is relatively far from the feedi
boundaries in both cases, and therefore it would not se
unreasonable if the effect of boundary conditions on the
lected patterns was no more than a distortion. Furtherm
concerning the Austin experiments, Qi Ouyang explained~in
a recent private communication! that the gel was sandwiche
with porous glass~0.4 mm thick!, the diffusion of which is
typically 5 times lower than that of gels. This brings th
effective thickness of each glass layer close to 1 mm, furt
reducing the significance of boundary effects in the patt
selection.

A different question is: What happens at the ‘‘boun
aries’’ of the ‘‘patterned layer,’’ and how does that constra
the pattern selection? Numerical investigations of this pr
lem were made possible by the proposal of a realistic mo
of the simpler chlorite dioxide-iodine-malonic ac
~CDIMA ! reaction by Lengyel, Rabai, and Epstein~LRE!
@24#. Using this model, Setayeshgar and Cross@25# analyze
numerically the one-dimensional patterns formed along
gradients imposed by boundary feeds and study their lin
stability to symmetry-breaking perturbations in a directi
transverse to these gradients. In Sec. VI of Ref.@25# the
authors suggest further investigations that, amongst o
things, should help to answer the question posed at the
ginning of this paragraph. It should be very interesting to
how such investigations support our proposal that the
scribed CIMA reaction experiments reveal approxim
E(3) symmetry in the ‘‘patterned layer.’’

C. Bifurcation sequence

In our theoretical setup, the wavelength of the pattern
the thickness of the monolayer are in the ratio 2A6:1.
Whether the bcc symmetry is exact or only approximate
pends on arguments that involve the above ratio and
boundary conditions on both sides of the patterned la
Bifurcation to the bcc~or black-eye! pattern occurs directly
from the uniform state in problems exhibiting exact bcc sy
metry @13,17,20#. We expect the same pattern to occur a
higher branch in bifurcation problems where the bcc symm
try is only approximate. In the experiments of Ouyang a
Swinney, black-eye patterns were observed as a secon
bifurcation~see the bifurcation sequence in Ref.@6#! and the
ratio of the pattern wavelength and monolayer thicknes
comparable to the value associated with our theoret
monolayer. The deduction of bifurcation diagrams with a
proximate bcc symmetry, and the planform visualization
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the appropriate coordinates are points needing further in
tigation. The mathematical setting introduced in Sec. II is
starting point for further work using standard methods
symmetric bifurcation theory@2#.

The results of the mathematical investigation proposed
the above paragraph should be closely compared with c
trolled experiments on the CIMA reaction. For that it is im
portant to obtain a good understanding of how the patt
selection in the experiment varies with the thickness of
gel layer.

IV. CONCLUSIONS

Including the third dimension may lead very naturally
bifurcations to black-eye patterns in thin domains. In t
scenario introduced here, the black-eye pattern is a lin
mode. We propose this technique as a method by whic
uncover spatial symmetries that are not expected in two
mensions. Together with all the present uncertainties ass
ated with the ‘‘boundaries’’ of the ‘‘patterned layer’’ in th
experimental setting and the difficulties in resolving
thickness, we argue that the observations are well within
scenario for a bifurcation with approximate bcc symmet
There are other nonstandard patterns whose relations
theoretical studies performed in two or three dimensions
still being debated~see, for example, Ref.@26#!. The tech-
nique introduced in this paper is very general and it may
applicable to other situations.

Finally, the black-eye pattern is of interest in other fiel
of science, in particular morphogenesis~see, for example,
Ref. @27#!. There is evidence of black-eye patterns in anim
coats, and the mechanism underlying its selection is not a
understood. Numerical simulations of reaction-diffusi
models in two dimensions reproduce several of the exp
mentally observed Turing patterns, but they fail to reprodu
the black-eye pattern~see Table 1 of Ref.@27#!. We express
here a strong conviction that black-eye patterns can be
duced by three-dimensional simulations in thin domai
Such simulations should provide important information to
clarification of essential issues concerning the pattern th
ness and its boundaries.
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